IB Mathematics: Analysis and Approaches HL

HL Paper 3 Mock A 2021 – WORKED SOLUTIONS v2

1. [Maximum mark: 25]
(a) (i)
$$f(-3) = 0, f(-1) = -1, f(1) = 0, f(3) = 1, f(5) = u(x) = x-3$$
 $(u \circ f)(-3) = u(f(-3)) = u(0) = -3$
 $(u \circ f)(-1) = u(f(-1)) = u(-1) = -4$
 $(u \circ f)(1) = u(f(1)) = u(0) = -3$
 $(u \circ f)(3) = u(f(3)) = u(1) = -2$
 $(u \circ f)(5) = u(f(5)) = u(0) = -3$

The above working is not necessary. It can be reasoned that since the range of *f* is [-1, 1] then the range of the composite function $u \circ f = u(f(x))$ will be [-1-3, 1-3] = [-4, -2].

0

(ii)
$$u \circ v \circ f = u(v(f(x)))$$

Since v(x) = 2x, then the range of $v \circ f = v(f(x))$ is [2(-1), 2(1)] = [-2, 2]Thus, the range of $u \circ v \circ f$ will be [-2-3, 2-3] = [-5, -1]

(iii)
$$f \circ v \circ u = f(v(u(x)))$$

Since the domain of f is [-3, 5] then the range of $v \circ u = v(u(x))$ must be [-3, 5] v(u(x)) = v(x-3) = 2(x-3) = 2x-6 $2x-6=-3 \implies x = \frac{3}{2}$ and $2x-6=5 \implies x = \frac{11}{2}$ Thus, the largest possible domain for $f \circ v \circ u$ is $\left[\frac{3}{2}, \frac{11}{2}\right]$.

(b) (i) f is not a one-to-one function. Hence, its inverse will not be a function.

Also, accept reasoning that since a horizontal line crosses the graph of f at more than one point then the graph of the inverse which is a reflection of f about the *y*-axis will have a vertical line crossing at more than one point indicating that one value in the domain (*x*) produces more than one value in the range (*y*). Hence, inverse of f is not a function.

(ii) The domain of f needs to be restricted so that g is a one-to-one function. By inspecting the graph of f, it can be deduced that the largest possible domain of g is [-1, 3].

HL Paper 3 Mock A 2021 – WORKED SOLUTIONS v2

(c) (i)
$$h(x) = \frac{2x-5}{x+d} \implies y = \frac{2x-5}{x+d}$$

Switch domain and range, and solve for *y*:

$$x = \frac{2y-5}{y+d} \implies xy+dx = 2y-5 \implies xy-2y = -dx-5 \implies y(x-2) = -dx-5$$

Thus, $h^{-1}(x) = \frac{-dx-5}{x-2}$

(ii)
$$h(x) = h^{-1}(x) \implies \frac{2x-5}{x+d} = \frac{-dx-5}{x-2}$$
; Thus, $d = -2$

(iii)
$$(h \circ k)(x) = h(k(x)) = \frac{2k(x) - 5}{k(x) - 2} = \frac{2x}{x + 1} \implies 2x \cdot k(x) - 4x = 2x \cdot k(x) - 5x + 2 \cdot k(x) - 5$$

 $2 \cdot k(x) = x + 5 \implies k(x) = \frac{x + 5}{2}$

(d)
$$r(x) = \frac{ax+b}{cx+d} \implies y = \frac{ax+b}{cx+d}$$

$$x = \frac{ay+b}{cy+d} \implies cxy+dx = ay+b \implies cxy-ay = -dx+b \implies y(cx-a) = -dx+b$$

$$y = \frac{-dx+b}{cx-a} \implies r^{-1}(x) = \frac{-dx+b}{cx-a}$$

In order for $r(x) = r^{-1}(x)$ then it must be that $\frac{ax+b}{cx+d} = \frac{-dx+b}{cx-a}$

Therefore, a function r in the form $r(x) = \frac{ax+b}{cx+d}$ is self-inverse if a = -d

HL Paper 3 Mock A 2021 – WORKED SOLUTIONS v2

2. [Maximum mark: 30]

(a) k = 0: curve $y = xe^x$ and line y = 0 (x-axis) intersection: $xe^x = 0 \implies x = 0$ or $e^x = 0$ $e^x > 0$, $x \in \mathbb{R}$, therefore $y = xe^x$ and y = 0 intersect only one when x = 0 and y = 0 (at the origin)

(b) k=1: line is y = x

find equation of line tangent to $y = xe^x$ at (0, 0)

 $\frac{dy}{dx} = xe^{x} + e^{x}; \text{ at } (0, 0): \quad \frac{dy}{dx} = 0 + e^{0} = 1$ equation of tangent line is $y - 0 = 1 \cdot (x - 0) \implies y = x$ Q.E.D.

(c) (i) $xe^x = kx \implies x(e^x - k) = 0 \implies x = 0 \text{ or } x = \ln k$

 $\ln k$ exists when k > 0; however, when k = 1, $x = \ln 1 = 0$ and there are <u>not</u> two distinct points of intersection Therefore, there are two distinct points of intersection when k > 0, $k \neq 1$

₹V

17

(ii) $xe^x = kx \implies x(e^x - k) = 0 \implies x = 0 \text{ or } x = \ln k$ when x = 0, y = 0; when $x = \ln k$, $y = k \ln k$

coordinates of points of intersection are (0, 0) and $(\ln k, k \ln k)$

(d) (i) area of
$$A = \int_0^{\ln k} (kx - xe^x) dx$$

(ii) $k = e^2$: area of $A = \int_0^{\ln(e^2)} (e^2x - xe^x) dx$
area of $A = \int_0^2 e^2 x dx - \int_0^2 xe^x dx$
 $= \left[\frac{e^2 x^2}{2} \right]_0^2 - \int_0^2 xe^x dx$
Find $\int xe^x dx$ by integration by parts:
 $u = x \Rightarrow du = dx$; $dv = e^x dx \Rightarrow v = e^x$
 $\int xe^x dx = xe^x - \int e^x dx$
 $= xe^x - e^x$
area of $A = \left[\frac{e^2 x^2}{2} \right]_0^2 - \left[xe^x - e^x \right]_0^2$
 $= \left[2e^2 - 0 \right] - \left[(2e^2 - e^2) - (0 - 1) \right]$

Thus, when $k = e^2$, area of $A = e^2 - 1$

 $=2e^2-2e^2+e^2-1$

HL Paper 3 Mock A 2021 – WORKED SOLUTIONS v2

(iii)
$$k = e^n$$
, $n \in \mathbb{R}^+$
area of $A = \int_0^{\ln(e^n)} (e^n x - xe^x) dx$
 $= \left[\frac{e^n x^2}{2} - (xe^x - e^x) \right]_0^n$
 $= \left(\frac{n^2}{2} e^n - ne^n + e^n \right) - (0 - 0 + 1)$
Thus, when $k = e^n$, $n \in \mathbb{R}^+$, area of $A = e^n \left(\frac{n^2}{2} - n + 1 \right) - 1$ *Q.E.D.*
(e) (i) $y = xe^x \Rightarrow \frac{dy}{dx} = xe^x + e^x = e^x (x + 1) \Rightarrow \frac{dy}{dx} = 0$ at $x = -1$
 $y(-1) = -e^{-1} = -\frac{1}{e}$; therefore, coordinates of P are $\left(-1, -\frac{1}{e} \right)$
gradient of line $= k = \frac{0 - \left(-\frac{1}{e} \right)}{0 - (-1)} = \frac{1}{e} \Rightarrow k = \frac{1}{e}$
(ii) $k = \frac{1}{e}$: area of enclosed region $= \int_{-1}^0 \left(\frac{1}{e} x - xe^x \right) dx$
 $= \left[\frac{e^{-1}x^2}{2} - (xe^x - e^x) \right]_{-1}^0$
 $= (0 - 0 + 1) - \left(\frac{1}{2e} + \frac{1}{e} + \frac{1}{e} \right) = 1 - \left(\frac{1}{2e} + \frac{2}{2e} + \frac{2}{2e} \right)$
 $y = \frac{1}{e^x} x - P\left(-1, -\frac{1}{e} \right)$

(f) since 0 < k < 1, then $\ln k < 0$ and $x = \ln k$ is lower limit of integration area of $\mathbf{B} = \int_{\ln k}^{0} (kx - xe^{x}) dx$

$$B = \left[\frac{k}{2}x^{2} - (xe^{x} - e^{x})\right]_{\ln k}^{0} = 0 - 0 + e^{0} - \left(\frac{k}{2}(\ln k)^{2} - \ln k(e^{\ln k}) + e^{\ln k}\right)$$
$$= 1 - \frac{k}{2}(\ln k)^{2} - k\ln k + k$$
$$= 1 - \frac{k}{2}\left[(\ln k)^{2} - 2\ln k + 2\right]$$
$$= 1 - \frac{k}{2}\left[(\ln k)^{2} - 2\ln k + 1 + 1\right] \qquad \left[(\ln k - 1)^{2} = (\ln k)^{2} - 2\ln k + 1\right]$$
$$B = 1 - \frac{k}{2}\left[(\ln k - 1)^{2} + 1\right]; \quad k > 0 \text{ and } (\ln k - 1)^{2} + 1 > 0, \text{ therefore } \frac{k}{2}\left[(\ln k - 1)^{2} + 1\right] > 0$$
Thus, $B = 1 - \frac{k}{2}\left[(\ln k - 1)^{2} + 1\right] < 1 \qquad Q.E.D.$